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The propagation of internal gravity waves in a shear flow in a rotating fluid is 
examined for the case when the rotation vector is inclined to the vertical. It is 
shown that internal gravity waves approaching a critical level, where w*, the 
Doppler-shifted frequency, equals 2S&, the vertical component of the Coriolis 
parameter, will be either transmitted or absorbed according as 

here W, is the vertical group velocity, 2QX is the horizontal component of the 
Coriolis parameter, 1 and m are the easterly and northerly wavenumber com- 
ponents, and U, and V ,  are the shear rates of the easterly and northerly compo- 
nents of the mean flow. Between critical levels, wave action flux is conserved. 
However, for a wave absorbed at a critical level, the wave action flux is attenuated 
by a factor exp { - 2 4  [m(U, + 2QH) - ZK]/(Zq + mK) I}. The phenomenon is also 
analysed using a WKBJ approximation. 

n9J*2Qv{m( u, + 2QH) - ZK} 2 0; 

1. Introduction 
It is well known that internal gravity waves propagating in a shear flow can 

be absorbed a t  certain critical levels, at which the local vertical wavenumber is 
infinite and the local vertical group velocity is zero. The phenomenon was 
identified by Bretherton (1966), using a WKBJ approximation and the related 
concept of a wave packet. Subsequently, a more sophisticated analysis (Booker 
& Bretherton 1967) showed that an internal gravity wave may be transmitted 
through a critical level, but is heavily attenuated €or Richardson numbers of 
order unity, or greater. Recently, it  has been shown that hydromagnetic waves 
possess critical levels in a variety of contexts, involving the presence of density 
stratification, rotation, a shear flow or combinations of these (see Acheson 1972, 
1973; McKenzie 1973; Rudraiah & Venkatachalappa 1972a, b ) .  

For internal gravity waves in a shear flow, the critical level is the height a t  
which the Doppler-shifted wave frequency is zero. Booker & Bretherton (1967) 
showed that the vertical transport of horizontal momentum by internal gravity 
waves is independent of height except at  critical levels, where there is a dis- 
continuity and the waves are attenuated by a factor exp { - 2;rr(Rc - a)+); here 
Bc is the Richardson number a t  the critical level. The local Richardson number 
R is R = N2/ (  U: + VE), (1.1) 
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where N2 is the Brunt-Vaisalb frequency and ( U ( z ) ,  V ( z ) ,  0) is the mean hori- 
zontal velocity. It was assumed that R was everywhere greater than a, as this 
is a sufficient condition for stability of the mean flow. 

Jones (1967) examined the effects of rotation about a vertical axis. He showed 
that the single critical level is replaced by the two levels at  which the Doppler- 
shifted wave frequency is equal in magnitude to the Coriolis frequency. In 
addition, the vertical flux of horizontal momentum is not conserved, but the 
vertical flux of angular momentum (about the vertical axis) is conserved and is 
a suitable measure of wave intensity. He was then able to demonstratme that, if 
the Coriolis frequency is much smaller than the Brunt-Vaisalii frequency, the 
wave attenuation process away from the critical levels is still described accu- 
rately by Booker & Bretherton’s results, although the behaviour of the waves 
in the vicinity of the critical levels is substantially altered. 

This paper will examine the effects of rotation about an axis inclined to the 
vertical. It will be shown that there are again two critical levels at which the 
Doppler-shifted wave frequency is equal in magnitude to 2QV, the vertical 
component of the Coriolis parameter. However, the effect of 2QH, the horizontaZ 
component of the Coriolis parameter, is to cause each critical level to act as a 
valve. For other examples of the valve effect at a critical level, see Acheson 
(1973) and McKenzie (1973). A wave of Doppler-shifted frequency w* and 
horizontal wavenumber components Z and m (easterly and northerly compo- 
nents respectively) will pass through the critical level without attenuation if 
its vertical propagation speed W, is such that 

Wgw*2QV{m(u,+2QH)-ZV,} < 0;  (1.2) 

a wave satisfying the opposite inequality will be attenuated at  the critical level 
by a factor 

Here U(x) and V(z)  are the easterly and northerly components of the mean flow 
respectively, and the shear rates U, and V ,  are evaluated at the critical level. In 
addition, it will be shown that a suitable measure of wave intensity is the wave 
action density 9 = &I@*, which is conserved between critical levels; here & 
is the wave energy density. However, if the Coriolis parameter is much smaller 
than the Brunb-VaisLIii frequency, the net wave attenuation away from the 
critical levels suffered by as wave passing through both critical levels is still 
accurately described by Booker & Bretherton’s results. 

In 0 2 the linearized equations of motion for the perturbed state are formulated 
in the Boussinesq approximation. In  $ 3  the solutions of the equations in the 
vicinity of each critical level are obtained by the method of Frobenius, and 
interpreted by the principle of conservation of wave action. In  $ 4  a WKBJ 
approximation is used to supplement the critical level analysis. The appendix 
contains a derivation of the WKBJ approximation. 
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2. Equations of motion 
Let L be a length scale characteristic of both the perturbed and mean flows 

and let N;l be a time scale, where XI is a typical value of the Brunt-Vaisala 
frequency. Then 

is a small parameter, characterizing the magnitude of the density perturbations. 
I f  c1 is a typical value of the speed of sound, then 

E = N2, L/g (2.1) 

F = gL/c; ( 2 . 2 )  

is also a small parameter, being the ratio of L to the ‘scale height’ of the atmo- 
sphere, and indicative of the effects of compressibility. The ratio FIe is a property 
of the mean state; for an ideal gas . F I E  = y -  l / y ,  where y is the ratio of the 
specific heats; it  will be assumed that F is O(e). Let the velocity scale be N I L ,  
the density scale be p1 and the pressure scale p,gL. Then the equations governing 
conservation of mass, momentum and entropy for an inviscid non-diffusive 
fluid referred to a frame rotating with constant angular velocity S2 are, respec- 
tively, using non-dimensional variables, 

dpldt +pV. u = 0, (2.3) 

OP Ik=O, du 
- + 2 8  x v+E-I- +€- 
at P 

Here u is the velocity relative to the rotating frame, p is the pressure, p is the 
density, c is the speed of sound (a prescribed function o f p  and p) and k is a unit 
vector in the vertical direction. The centrifugal effects of rotation have been 
absorbed into the gravitational term gk, which is assumed to be a constant. The 
x and y axes will be in the easterly and northerly directions respectively, and the 
z axis will be in the vertical direction. Thus 

2S2 = (0, 2QH) 2Q2,). (2 .6)  

Note that 2QH and 2Q2, are the non-dimensional horizontal and vertical com- 
ponents of the Coriolis parameter, and have been scaled by N,. 

Let the mean flow be represented by a velocity V ,  pressure Q and density R, 
satisfying (2.3)-(2.5). It will be assumed that the mean flow is time independent, 
and that V is horizontal and a function of z only; 

v = (U(z) ,  V(z) ,  0). 
It follows that e R 2 S 2 x V + V Q + R k  = 0, 

V.VR = 0. 

Thus the mean flow is in hydrostatic and geostrophic balance. To leading order 
in E ,  there is just hydrostatic balance, and consequently the horizontal gradients 
of Q are smaller by a factor O(s) than the vertical gradient. Elimination of Q 
from (2.8) gives 

R, = - e2Q2 .Q(RV) ,  R, = e 2 8 . V ( R U ) .  (2.10) 
19 F L M  70 
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If this is to be consistent with (2.9) then the ratio VlU must be a constant: the 
mean velocity has a, constant direction. The general solution of (2.10) shows that 

(2.11) 

where f is an arbitrary function. The Brunt-Vaisala frequency is N ,  where 

eN2 = - (RJR + F/C2)  ; (2.12) 

here C is the speed of sound c as a function of (Q, R). The presence of E in (2.12) 
is necessitated by the definition of E in (2.1) and incorporates the approximation 
that the density gradient of the mean flow is small ( O ( E ) ) .  

The equations governing the perturbed motion are obtained by linearizing 
(2.3)-(2.5) about the mean flow solution. I n  this and the subsequent section, 
solutions of the perturbed equations will be sought using separation of variables. 
This implies, in particular, that N 2 ,  RJR and RyIR must be functions of z only. 
It is clear from (2.11) that this will be possible only in the Boussiiiesq approxi- 
mation, in which E ,  P-tO (in the perturbed equations). Also, it follows from 
(2.10) that 

R,IR = - s ~ Q ~ , V , + O ( E ~ ) ,  R,/R = E~Q,U,+O(E~) .  (2.13) 

Hence in order to separate variables it will be assumed that V ,  and U, are both 
constants. It follows that 

v = uz, u = (a,/3, O ) ,  (2.14) 

where a and /3 are the constant shear rates U, and V ,  respectively. There is no 
loss of generality in supposing that V vanishes a t  x = 0,  as this can always be 
achieved by a suitable choice of origin for z and use of the condition that V has 
a constant direction. To obtain the perturbed equations, let 

u = V+G, p = &+ey^, p = R ( l + & ) .  (2.15) 

Substitution into (2.3)-(2.51, linearization in the perturbed variables v, (Î  and P,  
and application of the Boussinesq approximation (e, P 3 0) lead to  

V.G = 0, (2.16) 

DC 1 
- + & ~ + 2 5 1 ~ 8 + - V Q + P k = 0 ,  
Dt R (2.17) 

where 
D a  a a _ _  - -+az-++z-. 
Dt - at ax ay 

(2.19) 

Here (&,8 ,&)  are the components of the perturbed velocity 9. Note that the 
presence of E in (2.15) is required by the Boussinesq approximation, which has 
been anticipated in the definition of E in (2.1). 

There does not seem to be any sufficient condition known that will ensure the 
stability of the mean flow considered here. In  the absence of rotation, a sufficient 
condition for stability is that the Richardson number N2/a2 + / 3 2  be greater than 
$; it  seems plausible that in the presence of rotation a sufficiently high value of 
the Richardson number will ensure stability. It will be assumed here that the 
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mean flow is stable, and consequently the perturbed equations possess wavelike 
solutions, for which 

( 2 . 2 0 )  

(2 .21)  

(2 .22)  

1 
G = Re(v(z)exp (i lxfimy-iwt)},  

4 = Re (q(z )  exp (ilx + imy - iwt)}, 
P = Re (r(z)  exp (ilx + imy - iwt)}. 

The resulting equations are 
ilu + imv + WZ = 0, 

- iw*V + wa + 251 x v + irc,q/R + (qz/R + r )  k = 0, 

- iw*r - u2QV,8 + v2Q,a - N2w = 0, ( 2 . 2 3 )  

where w* = W - K H . ~  = w - ( ~ H . a ) z ,  

K~ = ( I ,  m, 0). 
( 2 . 2 4 )  

w* is the Doppler-shifted, or intrinsic, frequency and K~ is the horizontal wave- 
number vector. Finally, elimination of all variables except w leads to the equa- 
tion 

{(u*2- (2Q,)"}w,,+{ -2(2Q,)20-/w*:2i(2Qv)p)w, 

f { - 2i(2!22,) g/%/w* + ( N 2  - w*') (12  + m') + 2s1H mp} w = 0, ( 2 . 2 5 )  

where p = [m(2QH+a)-l/3], g = u H . a .  (2.26), ( 2 . 2 7 )  

This equation agrees with that obtained by Jones (1967)  for the case 2Q2, = 0, 
,8 = 0. The pressure perturbation is 

( 2 . 2 8 )  
i[w*2-(2Qv)2] wz+[iW*(cT+2Q~m)+2Q2,p]w 

w*(P + m2) q l R  = 

3. Critical levels 
The equation (2 .25)  for w has singularities at  the critical levels, where 

w*2 = (2s1,)Z. 

There is also an apparent singularity where w* = 0, but it will be shown below 
that solutions of ( 2 . 2 5 )  are always regular at w* = 0. Before considering the 
solutions of ( 2 . 2 5 )  near the critical levels, a useful invariant of (2 .25) ,  the wave 
action flux, will be obtained. 

If (2 .22)  is multiplied by V (the complex conjugate of v), uH.B eliminated by 
use of ( 2 . 2 1 )  and r eliminated by use of (2 .23) ,  it follows that 

- 
W 

a . 2 5 1  x v 
i a  -- ( q W ) + w a . Y - -  
R az iw* 

N21 w 12 2QH a I w 12 - iw* lv]2 - - + Z S ~ . V X B  = 0. ( 3 . 1 )  
+ iw* iw* 

Further, elimination of the horizontal component of v by use of (2 .22) ,  and use 
of the fact that 

0- = uH. a = - aw*/az ( 3 - 2 )  
19-2 
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leads to the equation 

+ 2Q .v x t + (war .t -Ea 

Taking the real part of this equation, it follows that 

a q a z  = 0, 

where 9 = Q Re [qE/u*]. 

v) = 0. (3.3) 

Of course, this result does not hold a t  a critical level. Equation (3.4) shows that 
9 is a constant between critical levels, but suffers a discontinuity at  each critical 
level. '3 is the wave action flux. In  the absence of rotation, 9 is proportional to 
the vertical flux of horizontal momentum (cf. Booker & Bretherton 1967); if 
2Q2, = 0, may be related to the vertical flux of angular momentum (Jones 
1967); in the present case, it; would seem that '3 has no simple interpretation in 
terms of flux of linear or angular momentum. However, QRe [qZ] is the vertical 
flux of energy, and hence a vertical propagation velocity W, can be defined 
such that 

where & is the local energy density (the time average of @!IG12+iRIP12/N2, or 
~ R \ V \ ~ + &R\T~~/N~). The wave action density is 9, where 22 = W F .  The 
conservation of wave action for a shear flow in the absence of rotation was ob- 
served by Booker & Bretherton (1967); its validity under the WKBJ approxi- 
mation has been established in a variety of contexts (Bretherton & Garrett 1968). 

&W, = +Re[qZ], (3.6) 

3.1. Singularity at w* = 2Qv 

Equation (2.25) has a regular singularity a t  z+, where 

z+ = (w - 2Qv)/0.  

w = (z-z+)h (1 + al(z - z+) + . . .), 

(3-7) 

The method of Frobenius shows that w can be written in the form 

(3.8) 

where the power series in z - z+ mill converge for Iz - z+I < 12Qv/aI. The indicia1 
equation for h has solutions 

h = 0) -i&. (3.9) 

(i) h = -ip/a. To determine the appropriate branch for ( Z - Z + ) ~  in (3.8)) it  
will be assumed that w = wR+iwI, with wI > 0; this 'radiation condition' 
arises from causality considerations (cf. Booker & Bretherton 1967). Thus 
I m  (2,) 5 0 according as a= 0; in the limit wI+O, the appropriate path for 
determining the branch of (z-z+)* passes below (above) z+. Hence 
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Substitut,ion of this solution into (3 .5 )  shows that 

293 

Recalling that the sign of w * 9  (here 2 Q 2 , 9 )  determines the direction of the 
wave, ib follows that if p > 0 ( < 0 )  the solution represents a wave propagating 
vertically downwards (upwards); in either case the wave energy flux is attenuated 
across the critical level by the factor 

exp ( - 2nlp/al). (3 .12)  

Kote that this solution is characterized by 

Wgpw*2Qy < 0, (3.13) 

where W, is the vertical propagation velocity (3 .6 ) .  
(ii) h = 0. This solution is regular at  z+. Evaluating (3 .5 )  at z = z+ shows that 

%/R = 4p/2Q,( l2+m2) ,  (3.14) 

Hence this solution represents a wave propagating vertically upwards or down- 
wards according as p : 0. This solution is characterized by 

W,pw*2Q2, > 0. (3 .15 )  

Thus the critical level at  w* = 2Q2, acts as a valve. A wave propagating to- 
wards the critical level will be transmitted unattenuated or absorbed [with 
attenuation factor (3 .12) ]  according as Wgpw*2Q, 0. Acheson (1973) has 
identified a similar valve effect in a variety of other contexts. 

3.2.  Singularity at w* = - 2Q, 

There is a regular singularity at  z-, where 

2- = (w + 2Qv)/cT. (3 .16)  

Seeking a solution of the form (3 .8)  in the variable 2-2- leads to an indicia1 
equation for h with solutions 

h = 0,iplCr. (3 .17)  

An analysis similar to that for w* = 2Q,  shows that, for the solution h = i p l~r ,  
9? is given by 

Hence, this solution represents a wave propagating vertically upwards or down- 
wards according as p z  0; in either case the wave energy flux is attenuated by 
the factor (3 .12 ) .  This solution is again characterized by (3 .13 ) .  For the solution 
given by h = 0,9? is again given by (3 .14) ,  and hence represents a wave propaga- 
ting vertically downwards or upwards according as p $ 0 ;  this solution is again 
characterized by (3 .15) .  
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Thus the critical level at w* = -2Qv also acts as a valve, operating on the 
same criterion as the critical level a t  w* = 2QV; a wave propagating towards 
a critical level is transmitted or absorbed according as Wgpw*2Q, 0. 

3.3. Singularity at w* = 0 

There is a regular singularity at z,, where 

zo = w / a  (3.19) 

Seeking a solution of the form (3.8) in the variable z-z,, leads to an indicial 

(3.20) 
equation for h with solutions h = 0,3 .  

The general solution is thus regular and has the form 

w == a,{l - ip(2 - z0)/2Qv + . . .}, (3.21) 

where a, is an arbitrary constant. Substitution into (3.5) shows that 59 is a 
regular fiinction of x near q, and is continuous a t  x,. 

3.4. 12Q2,1 < [w* l  4 8 2  

A wave transmitted by one critical level, and thus satisfying (3.15), will either 
continue to propagate in the same direction and thus be absorbed at the other 
critical level [where (3.13) holds], or will be reflected at some height between the 
critical levels, will then satisfy (3.13) and so will be absorbed at  the critical 
level from which it was originally transmitted, albeit from the opposite side. 
From arguments given below, substantiated by a WKBJ approximation in 9 4, 
the latter alternative is more likely. As 2QH, 2Qv+ 0 both critical levels co- 
incide with w* = 0, and the valve effect disappears. 

In order to examine the relationship of these results to those when 2l2, and 
2QL, are zero, i t  will now be supposed that Iw*l B 12Q,1, but that Iw*J < N ,  
where N B 1252,1, 12Q2,1. Then (2.25) is approximated by 

{(w*2 - (2Q,)2} w,, + { - 2(2Q,) 2cr/O* - 2i(2Qv)pU)w, 

+ { - 2i(2Q,) g p / ~ *  + N2(Z2 + m2) + 2Q2,mp} w = 0. (3.22) 

A solution to this approximate equation is sought of the form 

(2  - z o y  {I + .,/(x - 2,) + . . .>, (3.23) 

where the power series in ( z  - zo)-l will converge for Iz - zoI > I 2Qvl. This is the 
device used by Jones (1967) in the case 2QH = 0, V ,  = 0. The indicial equation 
for h has solutions 

where 

h = fr f iv, 
v = { [Ni(Z2 + m2) + 2QHmp]/cr2 - 4)B; (3.24) 

also a, = -i2Q,p/& 

It will be assumed that v is real and positive (noting that this is a sufficient 
condition for stability if 2Q2, = 2Q2, = 0). It can be shown (by standard iteration 
arguments) that solutions of (3.22) will approximate to solutions of ( 2 . 2 5 )  if 
/w*l < N .  Also the solutions of (3.22) are approximately (Z-x,)h [A  given by 
(3.24)] if Iz-zol  < al. Thus the general solution of (2.25) is approximately 

w 2 A ( z  - Z O ) t + i Y  + B(z  - z0)i-iv, (3.25) 
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provided that 
p Q , p / q  < Ix--xoI < N/lal. 

Here A and B are arbitrary complex constants. The error in (3 .25 )  is 
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(3 .26)  

The appropriate branch for (x - x o ) n  is determined in a manner similar to that 
in $3.1  above. Substitution into (3 .5 )  then shows that, if (3 .26 )  holds, 

( -~v{IAlZ-- IB12}/Z2+m2 for z-x0 > 0, 

$v{ / A  l2 exp (2nv  sgn cr) - I BIZ exp ( - 2nv sgn a)]/Z2 + m2 for x - xo < 0. 
9[R z 

(3 .27)  

The error here is O( 12Q2,/NIP). Recalling that w* = cr(zo- z),it may be shown that 
the solution corresponding to the constant A is propagating vertically upwards 
or downwards according as cr 5 0. The solution corresponding to the constant B 
is propagating vertically downwards or upwards according as cr 0. I n  either 
case a wave propagating towards the critical level is attenuated by a factor 

exp ( - 2nv) .  (3 .28)  

For N > 12Qvl, 12QHl this agrees with the result obtained by Booker & Brether- 
ton (1967) ,  and shows that away from the critical levels the net attenuation is 
unaffected by the rotation. However, the preceding analysis clearly shows that 
rotation alters the behaviour near the critical levels in a radical way. Also the 
net attenuation described by (3 .28)  is much larger than that described by (3 .12 )  
(if N > 12Qvl, 12Q,1 and the Richardson number is large); this must be ac- 
counted for by a substantial change in the amplitude of w, that is, in the con- 
stants A and B in (3.25) and a, and b, in (3 .29) ,  as the critical levels are 
approached. 

It remains to try and connect the solution far from the critical level, given by 
(3 .25)  and (3 .26 ) ,  with the solution near the critical levels, 

w z a , t ( z - x z , ) ~ f i / ~ / ~ + b ,  for w* z +2Q2,. (3 .29)  

To be definite, let x+ < xo < z- (figure 1 )  and cr > 0 (so that 2Qv > 0). (The 
other cases are similar and will not be discussed.) Then substitution of (3 .29 )  
into (3 .5 )  shows that 

I 
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t 1 "- t I b. 

' b- + o * = -  2Qv 
w * = - 2 Q v  t 11- 

I, 
FIGURE 1. (a)  ,u > 0, ( b )  ,u < 0. Illustrates the wave absorption process for the case a, 
2Rv positive. The arrows give a qualitative indication of the respective wave amplitudes. 
++, transmitted wave; +, captnred wave. 

Also, for z > z- and z < z+, is approximately given by (3.27) in terms of A 
and B. Suppose that the solution is an upward-propagating wave for z < z+, 
so that B = 0 (as v > 0) .  Then w * 9  is positive for z < x+,  and from (3.27) is 
also positive for z > z-. From (3.30) it follows that 

(3.31) 

Substituting (3.31) into (3.30) shows that 59 < 0 for z+ < z < z-, and hence that 

P{1"+I2- lb+I2) > 0. (3.32) 

1 ~ U ( l a + I 2 e x P ( - 2 ~ ~ / l ~ / ) -  lb+I2) < 0, 

p(laJ2- p-12) > 0. 

Combining (3.31) and (3.32), it follows that 

P I ~ + I 2 e x P ( - 2 ~ P / I ~ l )  < PIb+l2 < P1"+I2. (3.33) 

Thus a wave which is upward propagating far from the critical levels becomes 
near w* = 2 f i v  a wave with both upward and downward components, although 
still carrying wave energy qhpwards. Just  above w* = 2QV, the wave again has 
both upward and downward components, and is carrying wave energy down- 
wards. U p  < 0, the dominant component below w* = 2Qv corresponds to a+, 
and is propagating upwards and absorbed a t  this level; just above w* = 2Qv 
the dominant component corresponds to b,, and is propagating downwards and 
is transmitted a t  this level. Ifp > 0, the dominant component below w* = 2Qv 
corresponds to b+, and is propagating upwards and transmitted a t  this level; 
however, just above w* = 2Qv the dominant component corresponds to a+, and 
is propagating downwards and is absorbed a t  this level. This suggests that the 
upward wave is reflected somewhere between the critical levels, a result sub- 
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stantiated by the WKBJ analysis of 9 4 .  In  either case the principal absorption 
takes place at  w* = 2Qv, the first critical level encountered. The situation is 
described diagrammatically in figure 1. Near w* = - 2Qv, the wave is again 
carrying wave energy upwards, although diminished in amplitude. 

Finally, the case p = 0 will be briefly considered. Near the critical level 
w* = 2Qv, 

w E a+ log ( z  - z+) + b,, (3 .34 )  
and it may be shown that 

-&Re (ia+6+)/2Qv(Z2 +m2) for z > x+, 
9 / R  = {{&rlc~l la+12-~crRe(ia+6+)}/2Qv(Z2+rn2) for z < x-. } (3 .35 )  

The a, wave (for which b, = 0) represents a wave propagating vertically up- 
wards, whose wave energy flux is reduced by an amount &Rnlcrl Ia+I2(Z2 +m2)-1 
at the critical level. The b, wave (for which a, = 0) has zero wave energy flux. 

4. WKBJ approximation 
When the mean flow varies only slightly over distances of the order of a wave- 

length, the WKBJ approximation and the concept of a wave packet provide a 
useful alternative approach to  critical level behaviour. The perturbed motion 
is described by plane waves with a local frequency w ,  wavenumber K and ampli- 
tude a, which may vary with position and time on a scale provided by the mean 
flow. The plane waves are assumed to be modulated such that the amplitude is 
very small except within a certain region, which moves with the group velocity. 
This approach to critical level behaviour was initiated by Bretherton (1966) 
for internal gravity waves in the absence of rotation. 

The WKBJ approximation is derived in the appendix for a general mean flow. 
For the particular mean flow considered in $32 and 3, V will be a function of 
2 = €2, where 8 [see (2.1)] now measures the ratio of a wavelength to the length 
scale of the mean flow. From (2 .14)  it follows that 

V = AZ, A = ( A ,  B, 0) = €-la. (4 .1)  

Here the requirements of the WKBJ approximation imply that the shear rate 
a is O(S) ,  so that A is O(1). The Richardson number is now 0(c2) .  The perturbed 
motion is now locally a plane wave given by (A 9), (A 10) (see appendix) whose 
frequency w and wavenumber K [see (A 1 I)]  satisfy the dispersion relation (A 14):  

W * ~ ( Z ~  +m2 +n2) = (2Q2,m + 2Q2,n)2 +N2(Z2 + m 2 ) .  (4 .2)  

Here ( I ,  m, n) are the components of the wavenumber K and w* is the Doppler- 
shifted, or intrinsic, frequency, 

w* = W - - K . V  = w-xz, 
8 = AI+Bm = K.A.  (4 .3)  

Note that u [see (2 .27) ]  is sS, and is O(S) ,  consistent with WKBJ approximation. 
Equation (4 .2 )  is a partial differential equation for the phase of the wave [see 
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A 1 1 ) ] ;  here, the appropriate solution is that with w ,  Z and m constants, and then 
( 4 . 2 )  determines n as a function of 2. The wave is confined to those values of Z 
for which (4 .2 )  has real solutions for n, i.e. those values of 2 for which 

(P+m2) ( N 2 - u S 2 )  [ w * ~ - -  (2Qtv)2]+(2QH)2m2w*2 3 0. 

@kin < w*2 < W L a X I r  

(4 .4 )  

The inequality ( 4 . 4 )  shows that 

where 
2mmax,min 2 = { N 2  + (2!J,)2 + (2Q2H)2m2/Z2 + m2} 

+ - [ {N2 i- (2Q,)2 + (2!2H)2m2/Z2 +m2}2 - 4N2(2Qr7)2]*. ( 4 . 5 )  

Note that wkin < (2Q,)z, with equality only if 2 R , m  is zero. The vertical com- 
ponent of the group velocity is W, = c . k [see (A as)],  where 

w * ( P  + m2 + n2) W, = (2QH rn + 2Q,.n) [2Q,,(Z2 + rn2) - 2Q2,mn] - N2n(Z2 + r n 2 ) .  

A wave packet (identified by particular values of w ,  Z and rn) has critical levels 
(4 .6 )  

where n-tco, that is, at those levels where = (2Q,)2. From ( 4 . 2 ) ,  

n(w*2 - (2!2,)2) = ( 2 Q H )  ( Z Q , )  m 

{(N2-0*2) [w*2- (2n,)2] (Z2+m2) + (2Q2,)2rn2w*2)6. (4 .7 )  

(4 .8 )  
or n - n 2  = - { [N2-(2QV)2]  (Z2+m2)+(2QH)2m2}/2m(2QH)(2Q,). ( 4 . 9 )  

The first root becomes infinite as the critical level is approached, but the second 
root is finite. The corresponding forms for the group velocity are 

W, N -(2Q,)rn/n!, (2Q2, )rn/ (Z2+rn2+n~) .  (4 .10 ) ,  (4 .11)  

Thus the first root (nl) corresponds to capture as W - t O  as lZ-2+/2,  where 
2, (=  ex+) is w -  2Q2,/S; as the wave packet approaches the critical level the 
time T-tco as 12- Z+l-I, and SO the wave packet is captured. The wave ampli- 
tude, measured by the wave action 9, is given by (A 28) ,  or, in the present case, 

Consider first the critical level w* = 2Qv. As w* -+ 2QV, 

n -Inl = (2QHt m/@* - 2%), 

(4 .12 )  

As the critical level is approached, 9- varies within the wave packet as 12 - Z+l-2, 
although the total wave action in the wave packet is conserved (cf. Grimshaw 
1972).  The amplitude a within the wave packet remains bounded, as may be 
deduced from (A 23)  and (A 29) .  These results for the wave amplitude compare 
favourably with those of $ 3 q  q.v. (3 .10 )  and (4 .20 )  below. However, the second 
rootr corresponds to transmission through the critical level, as W, is finite there. 
This wave will be reflected at the level where w* = @gin, reverse its direction 
and be captured a t  the critical level, albeit from the opposite side. A wave packet 
is either captured or transmitted according to the criterion 

< 0 for capture, 

> 0 for transmission. 
W,w*2n2,2QHrn (4 .13)  
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Next, consider the critical level w* = - 2 4 .  As w* -+ - 2Qv, 

n N n, = - 2QHm/(w* + 2Qv), (4.14) 

or n Nn2 = - ( [N2-(2f iv )2]  (22+m2)+(2QH)2m2}/2m(2QH) (2Qv). (4.15) 

The corresponding group velocities are 

(4.16), (4.17) 

Thus the first root (nl) becomes infinite, W tends to zero and so this root repre- 
sents capture; the second root is finite and represents transmission. The criterion 
for capture, or transmission, is again (4.13). 

It may be noted that the criterion for the continued validity of the WKBJ 
approximation is that the fractional change in wavenumber n over one wave- 
length should remain O(s)  as the critical level is approached. From (4.8), 

2QHm 
6n z s SZ, SZ = €82, 

Snfn z s2.1rS/2QHm. 

(w* - 2Qv) 
and so, putting 62 = 2?r/n, 

(4.18) 

(4.19) 

This will remain o(s), provided 8 is o ( 1 )  (i.e. u is O ( E ) )  and 2QHm is not zero. 
Also, the solution obtained in $3,  (3.8) and (3.10), may be written in the form 

w z exp { - i (p/g- l )  log ( Z  - z,)}. (4.20) 

This may be interpret.ed as a wavelike solution, with a vertical wavenumber 

.or 

n E -p/a(z-x+), 

n z {2Q2,m +e(mA - ZB))/(w* - 2Qv). (4.21) 

This differs from (4.8) by a term O(E).  Also (4.20) shows that the magnitude of w 
remains bounded near the critical level. 

These results may now be compared with those of $3. In the present notation, 
the criteria for capture or transmission, (3.13) or (3.15) respectively, derived 
without using the WKBJ approximation are 

W,w*2Q2,{2Q2,m+e(mA -ZB)) 2 0. (4.22) 

These differ from (4.13) only by terms O ( E ) .  Also, the results of $ 3  show that a 
captured wave is attenuated by the factor (3.12), 

exp [-22n1(2Q2,m+~(mA -ZB))/e(ZA + m B ) ( ] .  (4.23) 

This is transcendentally small in the WKBJ approximation, and is consequently 
ignored. 

The results of this section have so far presupposed that 2Q,m is not zero. 
If 2QHm is zero, then the valve effect disappears, and 

n=L- ((N2 - w*2) (12 + m2)J: 
(4.24) 

( 0 8 2 -  (2QV)2) ' 

(4.25) 
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From (4.5), the wa,ve is now confined to the region 

(2QV)2 < w; < N2. (4.26) 

As w* -+ 2QV, both roots for :a become infinite as 12 - 2+1+, W tends to zero as 
\Z -Z+l~ ,  the time T+co as IZ-Z+I-*, and so the wave packet is captured. 
The wave action varies as 12-2+1-*, and the wave amplitude as IZ-Z+la. 
The valve effect disappears when 2QHm is zero. It should be noted that in this 

case Snfn z E ~ T X ( ( N ~  - u*2) [w*2 - (2Qp)2] ( 1 2  + m2))-+, (4.27) 

and so the WKBJ approximation fails as the critical level is approached. 
Finally, if 2Q2, and 2 4  are both zero, the valve effect again disappears, and 

(4.28) 

W, = - N2n(12+m2)/u*(Z2+m2+n2)2. (4.29) 

There is now a single critical level at  w* = 0, both roots for n become infinite as 
lZ-Zol-l (here 2, = EX,), M7 tends to zero as 12-201-2, the time T+co as 
12-2,1-1 and so the wave packet is captured (cf. Bretherton 1966; Grimshaw 
1972, 1974a). The wave action 2F varies as IZ-Z,I-2, and the wave amplitude 
as 12 - Zol-+. Here 

6nln z & ~ 2 7 ~ S / N ( l ~ + m ~ ) * ,  (4.30) 

and the WKBJ approximation retains its validity. 

n = :t ((N2 - w*2) (12 + m2)/w*2p, 

Appendix. Derivation of WKB J approximation 
The basis for the WKBJ approximation is that the length scale L of the waves 

should be much smaller than that associated with the mean flow, namely g/N:; 
their ratio is E [see (2.1)], which is the crucial small parameter. In  9§2 and 3, E 

was also a small para.meter; however in those sections it measured only the 
magnitude of the mean den-sity stratification, and no assumption was made 
about the length scale of the mean density profile. Let 

X = E X ,  T = E t .  (A 1) 

Then it will be assumed that the mean flow variables V, R and Q are functions 
of X and T ,  where x and t are non-dimensional co-ordinates based on length 
scales L and N r 1  respectively (cf. 92). The mean pressure is now c l Q ,  the extra 
E-1 factor being necessary to ensure that the mean pressure gradient is of the 
same order as the mean density. The equations for the mean flow are therefore 

&V/9T + 2 8  x V + e-lR-lVQ + E-lk = 0,) 

where 

Here a11 differentiations are with respect to X and T .  To 0 ( e 2 ) ,  the mean flow is 
hydrostatic and geostrophic. The horizontal gradients of Q and R are O(e)  
smaller than the vertical gradients. If Q and R are time independent to O ( E ) ,  
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then V is horizontal to O(E) .  However, as pointed out by Garrett (1968), if Q 
and R are unsteady (to leading order in e), then there will be a leading-order 
vertical velocity W ,  which will depend only on 2 and T to leading order in e. 
Although this case is rather artificial, it will be included below. If desired, p- 
plane effects may also be included, in which case 2Q2, will be a linear function 
of Y (Grimshaw 19743). 

To obtain the perturbed equations, let [cf. (2.15)] 

u = V + 6 ,  ip = c-'Q+Iz@, p = R ( ~ + E P ) ,  ( A  3) 

substitute into (2.3)-(2.5) and linearize in the perturbed variables 6, $ and B .  
The result is 

v.  8 - ( F p )  8 = O(€2), 

D6/Dt + 2 8  x 6 + R-lV{+Pk + €6.  VV +&2Q x V = O ( E ~ ) ,  
(A 4) 

(A 5) 

H . V , R - z  ( 3 - 6 . 2 Q x V )  -FB- 9Q {- (-)) = O ( E ~ ) ,  
c2 Bt 9~ ap pc2 

Dp N28+R-16 Dt- 

where D/Dt E a p t  + V.  V. 

Here a subscript H denotes a horizontal component, and all differentiations of 
6,  P or @ are with respect to x and t ,  but differentiations of V, R or Q are with 
respect to X and T. In  the last term in (A 6),  the overbar denotes evaluation at  
(Q ,  R )  and the differentiation of (pc2)-l is with respect to p at constant pressure 
p ;  for an ideal gas this term is zero; also 9 Q / 9 T  is O(E) ,  unless Q is unsteady to 
leading order in E ,  and is O(1). Note that the Brunt-Vaisala frequency (2.12) 
is now given by 

N 2  = - {Rz/R + F/€C2).  (A 8) 

In the absence of rotation, Bretherton (1966) has obtained WKBJ solutions 
for the system (A 4)-(a 6) when V is a function of 2 only. Frankignoul (1970, 
1972) has used WKBJ methods including the effects of rotation, but for a special 
shear flow and variations in T only. Lewis (1965) has developed WKBJ pro- 
cedures for general first-order systems governing dispersive waves. Following 
his procedure, let 

6 = Re(v'eis), @ = Re(p'eie), P = Re(r'eis), (A 9) 

where e = €-1o(x, T ) .  (A 10) 

Here v', q' and r' are functions of X and T only. 0 is the phase function, and 
the local frequency w and local wavenumber K are given by 

-0 *, lc = vo. (A 11) 

Substitution into (A 5)-(A 7) gives 



302 

where 

@* = W-u.V, 

I = - v . v' + (PlEC2) WI + O(E), 

R. Grimshaw 

I 

From now on, all differentiations are with respect to X and T. Note that V,R 
is O(E) ,  so that I ,  M and P are all O(1) and the right-hand sides of (A 12) are 

To leading order in E ,  (A 3 2) is a set of linear homogeneous equations, and the 
O(@- 

condition that there be a soiution is 

K2WS2 = (252. K)' + N2&, (A 14) 

where K is the magnitude of K (i.e. (P +m2 + n2)* if K = ( I ,  m, n)) and K, is the 
magnitude of K ~ ,  the horizontal component of K (i.e. (Z2+m2)i), This is just the 
dispersion relation for plane internal gravity waves in a rotating fluid (Phillips 
1966, p. 193). Here (A 14) is a partial differential equation for the phase 0 by 
virtue of (A 11). The corresponding wave is 

'I r' = aN2, 

v ' =  - - - ( L x 2 - - n ~ ) - ~ ( x x k ) , }  iu*a a(252. K) 

G7 KH 

R-lq' = inr'/K2 - iv' .252 x K / K 2 ,  I 
where u ( X ,  T) is an undetermined amplitude at  this stage. 

5-vectors 
TO obtain an equation for the amplitude, i t  is convenient to introduce the 

(A 16) u = =  [ 1; 1, A?= El, 
R-lq' 

and write (A 12) in the form 

where A is the 5 x 5 matrix 
AU = E&, (A 17) 

- i W ' k  -2Q2, 2Q2, 0 

2Q, -iw* 0 0 
A =  -2Q2, O - i ~ *  1 (A 18) {! 0 i il im in 0 

0 0 - 1  - i W " / N 2  0 

Note that A is anti-Hermitian (i.e. AT = -A), and singular because of (A 14). 
The condition that the system of linear equations has a non-trivial solution for 
U is that ,At should be orthogonal to the null vectors of AT; since A is anti- 
Hermitian, this implies that & should be orthogonal to the null vectors of A: 

g: A? = 0, where AU, = 0. (A 19) 
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This condition will be applied when U, is given by (A 15), and w* is a solution of 
(A 14). To leading order in e, A c a n  be evaluated with U = U, (i.e. v', r' and q' 
given by (A 15)). Then (A 19) is an equation for the amplitude a, and reverting 
to  the previous notation (A 19) is 

T'. M + ;i;'P/N2 + R-Q'I = 0. (A 20) 

Substituting (A 13) into (A 20), it follows, after considerable manipulation, that 

- ,Bv' 1 9 r '  1 
9T N 2  BT R 

v - + - .F' - +- {T' . Vq' +$V. v'} 

lr'lz 9 N 2  
N 4  BT iw * 

(V x 7 ) .  (v' . V2Q) + K . (q'v'. vv)/Rw" - - __ - 

RZiw*lr'(2 - 8'. (v'.V(VQ)) 
+ cN4R € R i d  

= 0. (A2I) 

Taking the real part of (A 21) it follows that 

9T 

- 0. (A 22) 
92a 
BT 

(2a.lC)K.- - 
K Ir'I29N2 w*1a12 

+-.{Re (q'7') , VV} -- - - - 
RU" 2N4 BT K& 

Thelwave energy density d is the average (with respect to 6) of $R16l2+ iRIB(2/N2; 
that is, 

& = $Rlv'12+$Rlr'12/N2, 

or & = i R W * 2 K 2 1 a 1 2 / K L .  

A direct calculation from (A 15) shows that 

Re (q'T') = 2€c, 

where c is the group velocity, i.e. c = VKw*, and is given by 

W*K2C = - A%(k - nK/K2) + ( 2 8 .  K )  ( 2 8  - ( 2 a .  K) K/K2). 

Also, it  may be shown that 

9 w "  1 K k  1 9 N 2  2 a . K  92a 
- + C . v W "  = -K.(C.VV)+---l-+--K.- 9T 2 K~ wr 9T K'W* &8T* 

Substitution of (A 23)-(A 26) into (A 22) shows that 

9€ B 9 R  

Finally, using (A 2 )  to eliminate R gives the result 

aF/aT + v. (F(c  + V)) = 0, 

where F = B/o". 
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Here 9 is the wave action.. The conservation of wave action in the absence of 
rotation was established by Bretherton (1966) (q.v. also Grimshaw l972,1974a), 
and in a variety of other physical contexts by Bretherton & Garrett (1968). 
Equation (A 28) shows that the amplitude of the wave, measured by the wave 
action 9, moves with the group velocity C. 

Equation (A 28) is an equation for la]. The imaginary part of (A 21) leads to  
an equation for arg a of the form 

(9 /9T+c.V)arga+ ... = 0, 

where the omitted terms do not involve arga, a,nd have not been displayed as 
they are rather involved. 
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